Sayfalar

light GBM etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
light GBM etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

Pazar, Temmuz 08, 2018

EKG Kalp Atışı Sınıflandırması 6

Sonuçların Analizi ;


Kalp atışı sinyalinin sınıflandırılması amacıyla bu yazımıza kadar 9 metodu kullandık. Yukarıda gördüğünüz grafiği bu sonuçları kullanarak oluşturduk.
Tabloyu da görelim sayılar daha net gözüksün


Tablodan görüldüğü üzere, Derin öğrenme için uyguladığımız 3 ağ tipinden, Conv1d ve LSTM sırayla ilk iki sıraya yerleştiler.  İlk sıradaki Evrişimli yapay sinir ağı, her 3 ölçüt e  - precision,     recall, f1-score - görede  en iyi sonuca ulaştı. Derin öğrenmenin  bu iki modelini Boosting metodları takip ediyor. Sırayla Light GBM, Xgboost, CatBoost , üçüncü , dördüncü ve beşinciliğe yerleşiyorlar. Hemde pratik anlamda ulaştıkları sonuçlar bir birlerinden pek farklı değil. Üstelik 'F' tipi sinyal için derin öğrenme metodlarından daha iyi bir sonuca ulaşmış. Sinyal sınıflarının f1-skor değerlerine göre grafiğine bakalım















Bu bize gösteriyorki, illa derin öğrenme gibi bir müşkülata girmeye gerek yok. Boosting metodlarıda pek güzel işimizi görebilir.

Son olarak En başarılı iki metod olan Conv1D ve LSTM sonuçlarını birleştirince - Ensemble -, bir gıdım daha iyileşme oluyor.

 Classification Report
             precision    recall  f1-score   support

          N      0.990     0.997     0.993     18118
          S      0.933     0.804     0.864       556
          V      0.973     0.954     0.963      1448
          F      0.856     0.735     0.791       162
          Q      0.997     0.987     0.992      1608

avg / total      0.987     0.987     0.987     21892
Elbette bunlar bizim ulaşabildiğimiz sonuçlar.  3. yazımızda geçen metodolojiyi çok daha sistematik ve derinlemesine uygulanırsa sonuçların bir nebze daha iyi olabileceğini düşünüyorum. İlk yazılarımızda bahsetmiştik veri kümemiz sınıf  bazında dengesiz. Buna dair sınıf bazında ağırlıklar yada özel hata fonksiyonları - loss - denenebilir.

Karşılaştırma ;


Veri setini hazırlayanların, yazdığı makalede paylaşılan , sonuç tablosu şöyle ;

Görüldüğü gibi , makaleye göre daha başarılı  sonuçlara ulaşmışız.  Tabloda geçen diğer çalışmaların aynı veri seti üzerinde yapılmadığından karşılaştırmanın çok sağlıklı olmayacağını düşünüyorum.

Son olarak "müşteri her zaman haklıdır" düsturunca.

"Bir çalışma yaptık , Doktorlardan daha iyi kalp rahatsızlığını tespit ediyor !!! "  
mealinde gaflet içinde bir cümle ASLA kurmuyoruz.
Doğrusunun, çalışmanın uygulanabilirliğini, konunun UZMANLARIYLA - yani doktorlarla - görüşerek yapılması gerektiğini söylüyoruz.

Bunca Yazıyı sabırla okuduysanız tebrik ediyoruz. Her türlü eleştiri , görüş ve önerilerinizi bekleriz.


Çarşamba, Temmuz 04, 2018

EKG Kalp Atışı Sınıflandırması 4

Gradient Boosting Kütüphaneleri ile Sınıflandırma

Boosting ve gradient boosting genel algoritmalar. Yaygın olarak bilinen hali karar ağaçlarıyla çalışanı. Çok kaba bir özet geçersek. Zayıf sınıflandırıcılar olan küçük karar ağaçlarının birleştirilmesiyle  oluşturulmuş güçlü bir sınıflandırıcı oluşturulmaya çalışılıyor.



Gradient Boost 'un sklearnin içinde de var. Fakat biz harici kütüphaneler olana XGBoost, Light GBM ve CatBoost 'u burada kulanacağız

XGBoost :  İlk çıkan ve popüler olan kütüphane. Özellikle Kaggle yarışmalarında çok kullanılıyordu.
Tantım yazısı ;
XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

LightGBM : Microsoft 'un geliştirdiği açık kaynak kodlu bir kütüphane, Epey güçlü ve yaygınlaşmaya başladı.
Tanıtım yazısı;
 A fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

CatBoost : Yandex'in geliştirdiği açık kaynak kodlu bir kütüphane, Nispeten çok daha az biliniyor ama en az rakipleri kadar güçlü. Yaygınlaşmaya çalışıyor.
Tanıtım yazısı;
 CatBoost is an open-source gradient boosting on decision trees library with categorical features support out of the box for Python, R

 Konunun detayları hakkında bir kaç bağlantı verip geçiyoruz.

 Kullanımları 

 Sklearn tipi bir kullanımları var.  Sınıflandırıcı nesnenizi oluşturuyorsunuz. "fit" fonksiyonu ile eğitim , "predict" fonskisyonu ile tahmin yapıyorsunuz.

XGboost için   :  "XGBClassifier" sınıfı kullanılıyor


Sonuç :
             precision    recall  f1-score   support

          N      0.981     0.999     0.989     18118
          S      0.966     0.667     0.789       556
          V      0.977     0.921     0.948      1448
          F      0.894     0.728     0.803       162
          Q      0.994     0.965     0.979      1608

avg / total      0.980     0.981     0.980     21892


LightGBM  için : "LGBMClassifier" sınıfı kullanılıyor


Sonuç:
              precision    recall  f1-score   support

          N      0.982     0.999     0.990     18118
          S      0.974     0.683     0.803       556
          V      0.980     0.927     0.953      1448
          F      0.876     0.741     0.803       162
          Q      0.995     0.973     0.984      1608

avg / total      0.982     0.982     0.981     21892

CatBoost için : "CatBoostClassifier" sınıfı kullanılıyor.



Sonuç :
              precision    recall  f1-score   support

          N      0.982     0.997     0.989     18118
          S      0.931     0.680     0.786       556
          V      0.973     0.918     0.945      1448
          F      0.848     0.722     0.780       162
          Q      0.987     0.972     0.980      1608

avg / total      0.979     0.980     0.979     21892

Sonuçlar çok büyük farklılık göstermiyor.
Boosting kütüphaneleri ile yaptığımız denemelerin sonuçları böyl. Bir sonraki yazımızda kısmetse derin öğrenme ile aynı probleme çözüm bulmaya çalışacağız. Her türlü görüş ve önerilerinizi bekleriz.