Sayfalar

keras etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
keras etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

Pazar, Mayıs 17, 2020

Python ile Derin Öğrenme


Bazen söylemek istediklerimi çok karmaşık söyleyebiliyorum.  Bir önceki yazımızda anlatmak istediğimiz özetle şudur.  Tek başına Keras kullanmak artık mümkün değil. Tesorflow'a geçmek zorundayız.  Ama bunu yaparken Kerasdanda vazgeçmiş olmuyoruz çünkü Tensordlow 2.x den sonra Kerası merkeze almış bir yapısı var.

Bu konuda Türkçe basılı kaynak isytenlere önerebileceğimiz yegane kaynak kitap "Python ile Derin Öğrenme" kitabıdır. Bu kitap bir tercüme çalışması. Orijinal Halini "Francois Chollet" yazmış. 

Orjinal Kitap Linki  :  Deep Learning with Python

Tercümesini Bilgin Aksoy  kardeş yaptı. Karınca kararınca bizde düzenlemesine yardımcı olduk. Buzdağı yayınevi de basımını yaptı.

Türkçe Kitap Linki :  Python ile Derin Öğrenme


Kitap tanıtımından alıntı yapalım

Bu kitap, derin öğrenmeyi sıfırdan öğrenecek ya da bilgilerini artıracak herkes için yazılmıştır. Makine öğrenmesi mühendisi, yazılım geliştirici veya üniversite öğrencisi de olsanız bu kitapta değerli sayfalar bulacaksınız.Bu kitap, uygulamalarla ve kod yazarak derin öğrenmeyi öğretmeye çalışmaktadır. Matematiksel notasyon yerine sayısal kavramları kod örnekleriyle açıklayarak makine öğrenmesi, derin öğrenmenin temel fikirleri hakkında uygulamalı bilinç oluşturmaya çalışmaktadır. Ayrıntılı olarak açıklamaların eklendiği 30’dan fazla kod örneğinden, pratik tavsiyelerden ve derin öğrenmeyi somut problemlerin çözümünde kullanmayabaşlamak için gerekli her şeyin detaylı açıklamalarından öğreneceksiniz. Kod örnekleri Python derin öğrenme kütüphanesi Keras’ı arka planda TensorFlow’la kullanmaktadır. Keras en popüler ve hızlı gelişen derin öğrenme kütüphanelerinden biridir ve genelde yeni başlayanlara yaygın olarak tavsiyeedilmektedir. Bu kitabı okuduktan sonra derin öğrenmenin ne olduğu ne zaman uygulanabilir olduğu ve kısıtları hakkında sağlam bir temele sahip olacaksınız. Makineöğrenmesi problemlerine yaklaşmada standart bir yol haritasını ve sıkça karşılaşılan sorunlara nasıl çözüm getireceğinizi öğreneceksiniz. Görüntü sınıflandırma, zaman serisi tahmini, duygu analizi, resim ve metin üretme gibi bilgisayarlı görüden doğal dil işlemeye kadar birçok gerçek hayat probleminde Keras’ı kullanabileceksiniz.
Kitabın içeriğiyle ilgili daha detaylı bilgi için bakınız

 Aslında kitap çıkalı epey zaman oldu. Şimdi niçin duyuru yapıyoruz konusuna geçersek.  Bu kitaptaki örnek kodların Tensorflow .2x için adaptasyonunu yapalım diye bir çalışma içine girdik.

https://github.com/birolkuyumcu/deep-learning-with-python-notebooks-tf2.x

Tensorflow adaptasyonu deyince gözünüz korkmasın. Kodun çoğunda değişiklik olmuyor. Kitap yazılalı epey zaman geçmiş bu yüzden Tensorflow adaptasyou olmasada versiyon uyumsuzluğundan düzeltilmesi gereken  yerler olabiliyor. Peyder pey kodları düzenleyip paylaşacağız orjinal kodlara bakmak isterseniz burada


Her türlü görüş ve önerilerinizi bekleriz.

Pazar, Mayıs 10, 2020

Keras 'ın akibeti ile Tensorflow 2.x durumu




Bizi takip edenler bilir. Derin öğrenme kütüphaneleri hakkında yazılar yazmıştık.


Bizde bu kütüphanleri içinde "Keras" ı tercih etmiştik. Kullanımı kolay, ağ yapısını tasarlamak kolay, lego vari katman eklemeleri ile çalışıyordu. Genel eğitim fonksiyonları ile hafızdan yada dizinden , yada Python Generator kaynaklı şekilde eğitim tasarlamak mümkündü.  Üst düzey bir yapısı vardı alta Theano, Tensorflow, CNTK, mxnet gibi diğer kütüphaleri kullanabiliyordu.

Yukardaki yazılarda bahsettiğim gibi büyük şirketlerin savaş cephesi haline gelmiş bir ortamda, Googleın TF deki tekelci anlayışı. Kerasın yazarının google işe girmiş olması vs durumlar kerasın geleceği hakkında endişelendiriyordu.

Beklediğimiz gibi Büyük şirketlerin savaşı neticesinde geriye 3 şirket ve 3 Kütüphane kaldı
  • Tensorflow  /  Google
  • PyTorch     / Facebook
  • MxNet       / Amazon 

Theano gelişimi desteksizlikten  durduruldu.  CNTK ne yapıyor bilen yok.  Caffe2 yi PyTorch un içine gömdüler. Keras da müstakil versiyon yani değişik ktüphaneler üzerinde çalışabilen halini DURDURDU. Her tür backend ile çalışan en son versiyon Keras 2.2.5 oldu.  Duruma üzülsemde bir anlamda da hak vermek zorundaydım Theano zaten duruduruldu, CNTK ve MxNet cepheside Kerasa yeterli desteği çıkmayınca. Geliştiriciler mecburen böyle bir yola girmek zorunda kaldılar. Madem Tensorflow dışındakilerden destek gelmiyor. Tensorflowun içinde ki keras üzerinde yürümeye devam ederiz dediler.

Yazının başındaki Resmi
"If you’re asking “Keras vs. TensorFlow”, you’re asking the wrong question" 
yazısından aldım özetle dediği ; Kerasmı Tensorflow mu diye soruyorsanız yanlış soru soruyorsunuz diyor. Artık zaten böyle bir sorunun hiç bir anlamıda kalmadı
 Ama beklenmeyen şey Tensorflow 2.0 ile oldu. Tensorflow'un merkezine süpriz bir şekilde Keras geçti. Pek çok kaynakda sizde araştırın göreceksinizki eski NN kısmının kullanımının anlatıldığı felan yok. Tensorflow 2.x ile temel kısımlar keras üzerinden anlatılmaya başladı ve şimdilik öyle de devam edecek gibi görünüyor.


Elbette herşey güllük gülüstanlık değil. Tensorflow 2.x geçmekle öğrenmemiz gereken yeni şeylerde var. Mesela verilerle ilgili kısımlar için "tf.data" kullanmayı öğrenmek veya Ön eğitimli model kullanımı için TensorFlow Hub kullanmayı öğrenmek  gibi. 


Udacity de yayınlanan bu ücretsiz kurs ile Keras'dan TF 2.x geçişinizi hızlandırabilirisiniz.

Bu durumun pek çok avantajları var elbette. Çoklu GPU kullanımı , ve  elbette TPU kullanımı artık mümkün. Keza yazdığınız kodu pek çok ortamda çalıştırma imkanına kavuşmuş oluyoruz. En büyük çekincem Kerasın logo vari yapısının bozulup "subclassing"  yapısının mecburi hale getirilmesi. Yeni tip katman tanımlamaları için bu tür "subclassing" sistemi mecburi olabilir ama bu katmanların yine eski metodlarla bir araya getirilebilmesi şartıyla. Bütün yapıyı bu tip bir sisteme dönüştürdüğünüzde Keras kullanmanın zannımca hiç bir anlamı kalmıyor malesef


Son olarak Kerasın ana geliştiricsinin fikirleri ve  "Francois Chollet" in tf.keras'ın detaylarını anlattığı 2 video ile yazımızı tamamlıyoruz.



Her türlü görüş ve önerilerinizi bekleriz.

Pazartesi, Ekim 08, 2018

DeepCon'18 payment anomaly workshop

DeepCon'18 geçtiğimiz cuma ve cumartesi günü yapıldı. Yoğun bir katılım vardı. Emeği geçen herkese burdan teşekkür etmek isteriz. Pek çok konu konuşuldu. Bence çok daha önemlisi ilgili insanlar bir araya geldi. İletişim pek çok zaman gelişmedeki temel motor işlevini görür. İnsanların bir şeyler yapma ve öğrenme gayretini görmek, Yada yaptıklarınızın takip edildiğini öğrenmek gayretinizin artmasına vesile oluyor.

SefaMerve.com ArGe Merkezinin çalışmalarından bahsettiğimiz, "Eticarette yapay Zeka Uygulamaları" başlıklı  bir sunumumuz oldu. Sunumu Cüneyt bey yaptı. Sunumun ilk kısmında "Payment Anomaly" başlıklı bir kısım sonrasında genel yapılanlar anlatıldı. Ben burada İlk kısım için biraz daha teferruatlı bir açıklma yazmak istiyorum. İnşallah birilerine Faydalı olur.

Bir E-Ticaret firmasının helede Uluslararası satışı varsa pek çok kaynakdan ve çeşitli kurlarda tahsilat yapması gerekmektedir. Pek çok banka, değişik ödeme türleri ( paypal, paybyme vs... ) gibi Değişik ülkelerde çalışmaktadır. Yani sistemin sağlıklı yürüyebilmesi için pek çok tahsilat sisteminide sağlıklı yürüyor olması lazımdır.

Biz tahsilat sistemindeki olası anormalliklerin tespiti için, her türdeki alt sistem için yapılan saatlik tahsilatların toplamlarını bir zaman serisine dönüştürdük. Sonra 24 saatlik veri ile 25. saat deki değeri tahmin edecek bir model kurduk.  Tahmin ve gerçek değer arasındaki belli eşik edeğerinden fazla farklılık ve bu farklılığın belli saat boyunca devam etmesinin bir anomaly olacağını varsaydık.




Çalışmamız bu anlamda klasik bir zaman serisi tahmini modeline benzetilebilir. Bir kaç özelliği var ; çok girişli, çembersel normalizsayon, gurup normalizasyonu.

Circular Normalization:

Genelde İnsan davranışları için elebtte burda bizim ana ilgimiz olan satın alma için  zamanın önemi büyük. Zamanın dönügüleri var.  Gün içinde bazı saatlerde satışlar artarken bazı saatlerde çok düşe biliyor. Haftanın günlerine görede bu değişimi gözlemleye biliriz, hafta içi ile hafta sonu davranış farkları olması gibi. Normalde bu döngüsel zaman değerlerinin girişi klasik kategorik veri gibi yapılmaktadır. yani mesela haftanın günleri için.
Pazartesi : 0 0 0 0 0 0 1
Salı         : 0 0 0 0 0 1 0
 ...
Pazar      : 1 0 0 0 0 0 0
 gibi Bu durumda her bir günün bir birine uzaklığı eşit olmaktadır.  Oysa Cumartesi gününün Pazar gününe uzaklığı ile Çarşamba gününe uzaklığı farklıdır.


Biz bu tip döngüsel kategorik değişkenler için Birim çember üzerinde eşit aralıklı  noktalar olarak Normalize etmeyi kullandık. Üstteki grafikde olduğu gibi.  Pazar Günü pazartesi ve Cumartesi gününe yakındır.  Bu şekilde bir dönüşümün bir faydasıda girdi büyüklüğünün küçülmesidir. Kasik metodla kodladığımızda 7 lik vektör olarak kodlayabilirken. Çembersel  Normalizasyonla 2 lik vektöre dönüştürmüş oluyoruz. Bu sayede günün hangi saati olduğunuda 24 yerine 2 lik vektör olarak kodluyoruz. Yada Ayın hangi günü olduğunuda 31 lik vektör yerine 2 lik vektör olarak kodlamış oluyoruz. Bu tip bi kodlamanın daha önce uygulandığına dair bir bilgimiz yok. İşin akademik yönünüde klasik metodlarla karşılaştırıp teferruatlı test etme imkanımız olmadı malesef.  Tecrübi bir yöntem olarak bahsetmiş oluyoruz.

Grup Normalization :

Zaman serisinde tedrici genel - belki mevsimsel - bir değişim olabilmektedir. Zaman serisinin normalizasyonunda komple bütün serinin maksimum değerine göre yapılması bizce kısmen problem olabilir. Hele bu genel değeşim çok büyükse. Genel maksimuma göre normalizasyon yerine biz bu çalışmamızda giriş olarak aldığımız 24 saatlik gurubun maksimum değerine göre bir normalizasyon yapmayı tercih ettik.

Multiple Input Model :


Çok girişli bir ağ yapısını kullandık.  Çünkü ; Zaman serisi dışında tahmin etmememiz gereken saatin zaman döngüsünde nerede olduğunun da tahmin ile ilgili olduğunu düşündük ve onuda kattık.
İlk girdimiz zaman serisi ve 24 saatlik bir birini takip eden tahsilat değerleri  LSTM ile işleniyor.
İkinci girdimiz  Zaman ile ilgili verimiz 8 lik bir vektör . ( haftanın günü, saat, ayın günü, ay )  kalsik YSA katmanı - Dense layer -  ile işleniyor. Sonrasında bu iki kısım birleştiriliyor.



Sonuç olarak sıradışı bir anormallik tespiti yaklaşımı üzerine bir çalışma yapmış olduk. Koda ve verilere ve sunuma şağıdaki github sayfamızdan ulaşabilirsiniz

github.com/birolkuyumcu/deep_con18_payment_anomaly_workshop

Her türlü görüş ve önerilerinizi bekleriz.


Pazartesi, Eylül 10, 2018

Ses ile Kalp Atışı Sınıflandırma

Evet başlığından da anlaşılacağı üzere yine sağlık alanında bir yazımız var. Bu seferek verimizi ses olarak alıyoruz.



Verimizin kaynağı yine Kaggle 
https://www.kaggle.com/kinguistics/heartbeat-sounds

Biz kaggle dan ulaşmış olsakda asıl verinin kaynağı 2011 tarihli bir yarışmadan geliyorumuş
http://www.peterjbentley.com/heartchallenge/index.html 
İki ayrı şekilde kaydedilmiş ses dosyaları var
ilki "iStethoscope Pro" isimli bir iphone uygulaması kullanılarak kaydedilmiş sesler


Kalanlar  "DigiScope" marka bir dijital steteskop ile alınmış



Ses dosyalarının uzunlukları farklı tahmin edeceğiniz gibi ses dosyalarının çoğuda Normal seslerden oluşuyor.
Önce ses dosyalarımızı test ve eğitim olarak iki guruba ayırıyoruz.
Eğitim %80
Test %20

 Bu ayrımdan sonra ses dosyalarımızı 0.5 saniyelik kaydırmayla 2 saniyelik kısımlara bölüyoruz. ve giriş verisi olarak bunu kullanıyoruz.Yani giriş verimiz 2 saniyelik ses sinyali. Elimizdeki ses dosyalarına göre konuşursak  ( sample rate 22050 )  44100 lük vektörü giriş olarak kullanıyoruz.


Veri dosyalarımızı oluşturduktan sonra tek boyutlu evrişim katmanları kullanan bir ağ tasarladık ve bir sınıflandırıcı eğittik.

  • Opimizasyon metodu : Adam
  • Toplam parametre sayısı :  1,366,865
  • Eğitim Epoch sayısı : 29 - earlystop ile -
 Eğitim grafiği


Modelin başarısı  eğitim için kullandığımız datalarla %95 in üzerinde

Eğitim için kullanmadığımız datalarla yaptığımız  test ve sonuçlarıda şöyle gösterelim


ortalama %73 -75 arası bir başarı görünüyor.

Başarının düşük olması ve  artımamız gerektiği bir gerçek elbette. Ama sadece ham ses sinyali vererek. Bir dönüşüm -fft mel vs gibi - yapmadan bir sınıflandırıcı eğitilebilmeside zannımca çok önemli bir özellik.

Fırsat bulabilirde bu çalışmaya tekrar dönebilirmiyiz bilemiyorum ama. Bu çalışmaya devam isteyenlere ilk önce ses sinyalinde kalp atış kısımlarının ayrıştırılması sonrasında bu çalışmanın yapılmasının başarıyı oldukça yükselteceğini düşünüyoruz.

Her türlü görüş ve önerilerinizi bekleriz.

Pazar, Temmuz 08, 2018

EKG Kalp Atışı Sınıflandırması 6

Sonuçların Analizi ;


Kalp atışı sinyalinin sınıflandırılması amacıyla bu yazımıza kadar 9 metodu kullandık. Yukarıda gördüğünüz grafiği bu sonuçları kullanarak oluşturduk.
Tabloyu da görelim sayılar daha net gözüksün


Tablodan görüldüğü üzere, Derin öğrenme için uyguladığımız 3 ağ tipinden, Conv1d ve LSTM sırayla ilk iki sıraya yerleştiler.  İlk sıradaki Evrişimli yapay sinir ağı, her 3 ölçüt e  - precision,     recall, f1-score - görede  en iyi sonuca ulaştı. Derin öğrenmenin  bu iki modelini Boosting metodları takip ediyor. Sırayla Light GBM, Xgboost, CatBoost , üçüncü , dördüncü ve beşinciliğe yerleşiyorlar. Hemde pratik anlamda ulaştıkları sonuçlar bir birlerinden pek farklı değil. Üstelik 'F' tipi sinyal için derin öğrenme metodlarından daha iyi bir sonuca ulaşmış. Sinyal sınıflarının f1-skor değerlerine göre grafiğine bakalım















Bu bize gösteriyorki, illa derin öğrenme gibi bir müşkülata girmeye gerek yok. Boosting metodlarıda pek güzel işimizi görebilir.

Son olarak En başarılı iki metod olan Conv1D ve LSTM sonuçlarını birleştirince - Ensemble -, bir gıdım daha iyileşme oluyor.

 Classification Report
             precision    recall  f1-score   support

          N      0.990     0.997     0.993     18118
          S      0.933     0.804     0.864       556
          V      0.973     0.954     0.963      1448
          F      0.856     0.735     0.791       162
          Q      0.997     0.987     0.992      1608

avg / total      0.987     0.987     0.987     21892
Elbette bunlar bizim ulaşabildiğimiz sonuçlar.  3. yazımızda geçen metodolojiyi çok daha sistematik ve derinlemesine uygulanırsa sonuçların bir nebze daha iyi olabileceğini düşünüyorum. İlk yazılarımızda bahsetmiştik veri kümemiz sınıf  bazında dengesiz. Buna dair sınıf bazında ağırlıklar yada özel hata fonksiyonları - loss - denenebilir.

Karşılaştırma ;


Veri setini hazırlayanların, yazdığı makalede paylaşılan , sonuç tablosu şöyle ;

Görüldüğü gibi , makaleye göre daha başarılı  sonuçlara ulaşmışız.  Tabloda geçen diğer çalışmaların aynı veri seti üzerinde yapılmadığından karşılaştırmanın çok sağlıklı olmayacağını düşünüyorum.

Son olarak "müşteri her zaman haklıdır" düsturunca.

"Bir çalışma yaptık , Doktorlardan daha iyi kalp rahatsızlığını tespit ediyor !!! "  
mealinde gaflet içinde bir cümle ASLA kurmuyoruz.
Doğrusunun, çalışmanın uygulanabilirliğini, konunun UZMANLARIYLA - yani doktorlarla - görüşerek yapılması gerektiğini söylüyoruz.

Bunca Yazıyı sabırla okuduysanız tebrik ediyoruz. Her türlü eleştiri , görüş ve önerilerinizi bekleriz.


Cumartesi, Temmuz 07, 2018

EKG Kalp Atışı Sınıflandırması 5

Derin Öğrenme

Evet son olarak günümüzün en popüler ve en güçlü yapay öğrenme metodu olan derin öğrenmeye geldi sıra. Malumunuz biz keras kütüphanesini kullanıyoruz. Bu problemi çözmek için 3 tane ağ tasarladık.  Hepsi için ortak kullanıdğımız parameterler şöyle
  • batch_size :  128
  • epochs :  120
  • optimizer :  adam

 Dense ;

İlki klasik yapay sinir ağı diyebileceğimiz, keras daki "Dense" katmanlarıyla oluşturulmuş bir ağ. Sklearn deki MLP nin benzeri bir çözüm diyebiliriz. Farklılığına gelirsek burda biz bunu keras kütüphanesini kullanarak uyguladık, ve 'Dropout' denen katmanlarda ilave ettik.


Eğitim grafiğimiz


Sonucumuz
  Classification Report
             precision    recall  f1-score   support

          N      0.983     0.995     0.989     18118
          S      0.916     0.664     0.770       556
          V      0.951     0.941     0.946      1448
          F      0.911     0.698     0.790       162
          Q      0.986     0.978     0.982      1608

avg / total      0.979     0.980     0.979     21892

Conv1D;

İkinci olarak Tek boyutlu evrişim katmanlarının kullanıldığı VGG tipi bir ağ tasarladık. Kısaca iki evrişim katmanı sonrasında boyut küçültme - bakınız pooling -  şeklinde tarif edilebilecek bir yapı.
Ağ yapımız böyle



Eğitim Grafiğimiz



 Sonucumuz
 Classification Report
             precision    recall  f1-score   support

          N      0.990     0.996     0.993     18118
          S      0.895     0.809     0.850       556
          V      0.971     0.950     0.960      1448
          F      0.826     0.735     0.778       162
          Q      0.998     0.986     0.992      1608

avg / total      0.985     0.986     0.986     21892

LSTM;

Son olarak Özyinelemeli Sinir Ağları - RNN - denen ağ yapısının en bilinen tipi olan LSTM  kullanıldı.  Bu tip ağlarda vectörel biri giriş değil, zaman da değişen değerler öğrenilir. Dizilimden bir sonuca ulaşma tipine "many to one"  diyorlar.

The Unreasonable Effectiveness of Recurrent Neural Networks
 Andrej Karpathy nin yukardaki yazısından detaylara ulaşabilirsiniz. Konuyu dağıtmadan devam edelim

Ağ yapımız şöyle



Eğitim Grafiğimiz



Sonucumuz
 Classification Report
             precision    recall  f1-score   support

          N      0.986     0.997     0.991     18118
          S      0.915     0.755     0.828       556
          V      0.964     0.938     0.951      1448
          F      0.813     0.673     0.736       162
          Q      0.996     0.980     0.988      1608

avg / total      0.982     0.983     0.982     21892

Sonuçlar hakkındaki görüşlerimizi bir sonraki yazıya bırakıyoruz. Sadece bu yazımıza kadar denediğimiz metodlardan en başarılısı evrişimli yapay sinir ağını uyguladığımız oldu deyip bitiriyoruz. Her türlü görüş ve önerilerinizi bekleriz.

Pazartesi, Nisan 02, 2018

Kelime Kök Ayırıcı



Artık Yapay Sinir Ağları Doğal Dil İşleme  ( NLP )  alanında da kendini gösteriyor. Yoğun olarak derin öğrenme algoritmalarının kullanıldığı yeni çözümler boy gösteriyor.
Yabancı kaynaklarda  Doğal Dil İşleme ile ilgilendiğinizde elinizdeki metin verisinin  temel temizleme yaklaşımı şu şekildedir.
  1. Kelimleri  ayır
  2. Kelimelrin kökünü bul  - stem -
  3. Anlama etki etmeyen genel kelimeleri at  - stop words -
Bu şekilde bir temizleme ile yapılmak istenen şey  Anlamı bozmadan Kelime sayısını azaltmaktır.  Böyle temizleme faliyetine girişmeksizin yapılan bir modellemede kelime sayısının astronomik boyutlara fırlamasına ve modelin çok kompleksleşip, öğrenememesine sebep olabiliyor.

İngilizce gibi bir dilde kök bulmanın genellikle pek bir ters etkisi olmuyor  Fakat,  Türkçede yapısı gereği sondan eklerle bazen fazlasıyla anlam değişikliği oluyor. Bu yüzden yapılacak çalışmada buna dikkat etmek gerekiyor.

bir örnek verelim

gözüm ağrıyordu. göz doktoruna gitttim.  gözlük numaram değişmiş. 
gözlüğümün çerçeveside eskimişti.  gözlükçüye gidince,  yeni bir gözlük çerçevesi de aldım.

göz, gözüm ,gözlük,, gözlüğümün gözlükçüye, gözlük ... diye geçen kelimelrin hepsinin köküne göz demek anlamı bozar.
gözüm => göz
gözlüğümün => gözlük
gözlükçüye => gözlükçü
daha doğru bir yaklaşım gibi. Elbette bir anlam kaybı var ama nispeten daha doğru gibi geliyor bana. Elbette farklı anlamlı , yazılışlı aynı kelimeler için  bir çözüm değil bu.
 
Ortada çözümü olmayan genel bir optimizasyon problemi var. Eğer sadece kökü kullansanız, bazı anlamları kaybetme ,htimaliniz var. Tamamını kullandığınızda kelime sayınız astronomik sayılar çıkıyor.

Kelime vektörleri bu işi çözmezmi  ? ,  Kelime vectörleri dediğimiz sistemde Kelimeler sabit uzunlukta vektörler olarak ifade ediliyor.  Temelindeki  fikir şudur. Aynı anlamı ifade eden kelimeler aynı bağlamda - context - de kullanılır. Büyük derlemde - corpus  - kelimeler birlikte kullanıldıkları kelimelere göre optimize edilerek her birisi için sabit bir vektöre ulaşılıyor. Yakın anlamlı kelimeler kelime vektör uzayında bir birine yakın konumlarda oluyorlar.  Burda şöyle bir problem var her kelimenin her türlü ekiyle birlikte yeterli miktarda kullanım metnin olması pek mümkün değil.

Çok sıkıcı bir girizgah oldu kusuruma bakmayınız.  Ama sebebi var.
Bizim bir çalışmamız oldu. Kök bulma işlemini seq2seq bir modele öğretmeye çalıştık. Sağolsun Ahmet Aksoy beyin yayınladığı bir veriyi kullanarak eğittik. Bu haliyle bırakmadık Yavuz Kömeçoğlu kardeş bu model için etkileşimli bir web sayfası hazırladı.

nlp-kokbulma.herokuapp.com/

Şimdiki haliyle kullanıcının vereceği kelime için model çalıştırıp bir cevap dönüyor. Kullanıcı Cevabın doğru yada yanlış olup olmadığını ve  doğrusunu bildirebiliyor.

* Bu projenin özelliği ne peki. Yukardaki girizgahdan anlayabileceğiniz gibi çok zor bir  problemi çözdük  gibi bir iddiamız yok. Bu projenin ana özelliği klasik yaklaşımın dışında bir çözüm getirmesi
Klasik yaklaşımda şöyle olursa nasıl yaparım böyle olursa nasıl yaparım diye kurlallar silsilesi kurgulamanız lazım.  Hatta karşımıza kurguladığımız hiç bir kurala uymayan bir kelime çıkarsa.
 if kelime BU ise kök ŞU dur.  
demek zorunda kalıyorsunuz.

Modern yaklaşımlarda Olabildiğince çok veri bularak , Bir birini takip eden bir yapının diziliminden örüntüler çıkarıp istenen sonuca ulaşılmaya çalışılır. Biz bu projede bunu yapmaya çalıştık. Verimizi sağlıklı bir şekilde büyütebilirsek, modelin  başarısı artacağını umuyoruz.

* Bir başka büyük özelliği etkileşimli bir şekilde sunuluyor olması.  Günümüzde Türkçede Doğal Dil İşleme üzerine çalışma yapacak kişin, ilk toslayacağı duvar, elde hazırda verinin olmayışıdır. Sağ olsunlar Yıldız Üniversitesinden Kemik gurubunun yıllar önce yaptıkları dışında açık şekilde ulaşılabilir bir veri malesef yok. Bu çalışmayla gönüllülerin girdiği yeni kelimeler ve düzeltmelerle çok daha geniş bir verisetine ulaşabilme imkanını sunuyor.

Bu proje bir rol model olarak düşünülüp çok daha kompleks DDİ ( NLP ) problemleri için çözüm ve veriseti toplama sistemleri düşünülebilir.

Elbette bunu özel sektörde çalışan ben ve Master tezini vermeye uğraşan Yavuz tek başımıza yapamayız. Kullananlar olması lazım. Kullanıcaların yazdıklarının toparlanıp ayıklanması lazım. Sistemin yeniden eğitilmesi lazım. Epey bir emek gerekiyor.  Hatta bence bu bu tip bir proje ve elbette daha gelişmişleri, Akademik olarak sahiplenilmesi gereken projelerden.  Biz projeyi çalıştırdık. Kodumuzuda deeplearningturkiye  gurubunun github hesabında  yayınladık

github.com/deeplearningturkiye/kelime_kok_ayirici

Bundan sonra Proje sahiplerini bekliyor.

Derin Öğrenme Kısmı:


Gelelim işin teknik kısmına Modelimiz Seq2Seq denen yapıda bir ağ.  Keras kullanıldı. Kelimeler harf bazlı kodlandı. Harf çeşit sayımız 34. Yani bir harfi 34 uzunluğunda vektör olarak kodluyoruz. Maksimum kelime uzunluğu eldeki veri setine göre 22 olarak belirlendi.
RNN ağ katmanı veriyi zaman bazında istiyor. Bizim durumumuzda kelime uzunluğu 22 olduğundan
22 seferde  34 uzunluklu vektörler. Ağın çıkışıda  aynı şekilde kodlanmış olarak sadece Kök kımı üretiliyor.

Ağın genel yapısına bakalım


çok sade bir çoklu girişden çoklu çıkış -seq2seq-  üreten RNN li bir model . Fazladan diyebileceğimiz  sadece başta Dikkat - Attention - kısmı var. Giriş deki verilerin önem derecesini öğrenmesi için bir YSA katmanı yerleştiriyoruz ve katmanın çıkışını veri için bir önek katsayısı olarak kullanıyoruz.

Modeli sade tuttuk çünkü eğitim eğrisi gayet güzel test verisi başarısıda epey yüksek.



Elbette Verilerin çoğalması ile Modelede ilaveler gerekebilir. Kodda kerasın çeşitli callback fonksiyonları kullanıldı. Onlardanda bahsedelim.

  • EarlyStopping : Eğitim esnasında takip ettiğiniz  değerde belirleyeceğiniz adım -epoch - boyunca iyileşme yoksa eğitim veridiğiniz adım sayısından önce durduruluyor. Bizim kodumuzda 9 adım boyunca test verisi başarımında bir iyileşme olmuyorsa duryor.
  • ReduceLROnPlateau : Eğitim esnasında takip ettiğiniz  değerde belirleyeceğiniz adım -epoch - boyunca iyileşme yoksa Öğrenme hızını sizin belirleyeceğiniz bir katsayıyla çarparak küçültüyor. Bizim kodumuzda 2 adım boyunca test verisi başarımında bir iyileşme olmuyorsa Öğrenme hızı 0.5 çarpılarak yarıya indiriliyor.
  • ModelCheckpoint : Eğitim esnasında her adım sonunda belirleyeceğiniz şartlara göre modelin komple yada sadece ağırlıklarının kaydedilmesi işini yapar. Bizim kodumuzda test verisi başarım değerinde bir yükselme olmuşsa kaydediyor.
  • CSVLogger : Eğitim esnasında her adım sonunda , hem eğitim hem test verisi için , Hata değeri - loss - başarım değeri - acc - . Ve  öğrenme hızı - learning rate -  değerlerini kaydeder.

Bizim anlatacaklarımız bu kadar. Bayda uzamız buraya kadar sabırla okuğunuz için teşekkürler . Her türlü görüş ve önerilerinizi bekleriz.

Pazartesi, Ocak 22, 2018

Bir derin öğrenme deneyi ( dropout ve batch normalization )

Derin öğrenme artık hemen her alanda kullanılmaya başladı. Popüler oldular çünkü yapay öğrenme algoritmalarından en güçlüsü olduklarını kanıtladılar. Buraya şöyle bir not düşeyim güçlü olması her zaman en doğru çözüm olmasını gerektirmiyor. Neyse konumuza dönelim.  Gerçek bir uygulamaya başlayan insanların hemen farkına varacağı tuhaf bir durumu var. Ağ yapısının bir standardı yok. Çeşitli uygulamalar için başarılı olmuş modeller var elbette.  Lakin "benim şöyle bir problemim var buna en UYGUN ağ yapısı nedir ?"  sorusunun  bir cevabı yok.
Problem, ağın sadece yapısında değil. Standart bir ağ yapısıda kullansanız ;
  • bazı katmanların varlığı yada yokluğu,  ( batchnormalization, dropout, pooling,...)
  • bazı katmanların çeşitleri ( relu , elu,.... )
  • hiper parmetrelerin değerleri. ( filtre büyüklükleri, sayıları , ... )
  • Ağ parameterelerinin başlangıç değer atama metodları ( gaussian , xaiver,... )
  • vs ..
gibi pek çok konuda belirsizlikler var. Bu gibi belirsizlikler alanı  tecrübi yani deneysel hale getiriyor.
Lafı çok dolandırmadan devam edelim. Geçen hafta sonu bizde gpu nun boşkalmasından istifade bir deney yapalım istedik.

Deneyimizin konusu Droput ve BatchNormalization denen  katmanlar hakkında.
Kısaca bahsedelim;


Dropout Katmanı  ; Ağ içindeki bazı bağlantıların kaldırılmasıyla  eğitim performansı artacağı varsayılıyor.  Dropout katmanına  0 dan büyük 1 den küçük bir oran veriyorsunuz. Eğitim esnasında bu oran miktarındaki bağlantıyı rastgele kapatıyor.

Batch Normalization ;  Ara Normalizasyon diyeceğiz. Normalde ağın girişini ve çıkışını başlangıçda normalizasyon işlemine sokmanız zaten gerekiyor. Ama ağın içinde işlemler sonucunda da veri dağılımı değişebiliyor. Bu katmanda ağın katmanları arasındaki geçişde verileri normalize ediyor. Olumlu etkilediği söyleniyor.
Deneyimiz için cifar 100 veri setini seçiyoruz. 
bakınız 
www.cs.toronto.edu/~kriz/cifar.html

32x32 lik renkli görüntülarin 100 sınıf için sınıflandırılmasını gerektiren bir veri seti.
Ağ yapısı olarakda VGG benzeri bir ağ yapısı kullanacağız. Şöyle;


 Deneyimiz de  bu ağ yapısında dropout katmanına  sırasıyla  [0.1,0.2,0.3,0.4,0.5] değerlerini vereceğiz ve Bunu hem ara normalizasyon  - Batch Normalization - katmanı varken hemde yokken   deyeceğiz. Sonuçlara bakacağız. Yani Toplamda  5x2 = 10 defa cifar 100 verisi için ağı eğiteceğiz.
  • Ağı eğitmek için maksimum epoch değeri olarak 250 yi seçdik. 
  • Erken durma - Early Stopping - işleminide koyduk. 13 kez Test başarımında - validation acccuracy - bir iyileşme olmuyorsa eğitim sonlandırılıyor.
  • Öğrenme hızınıda Test Başarımına  bağladık. 3 epoch boyunca  Test başarımında bir düşme olmuyorsa öğrenme hızımızı yarıya düşürüyoruz.
  • optimzasyon algoritması için "adam" kullandık
  • batch size : 128
  •  loss='categorical_crossentropy' 
  •  metrics=["accuracy"]
Ara Normalizasyon  olmaksızın sonuçlar


Ara Normalizasyonlu sonuçlar


başlıkların anlamlarını verelim
  • 'Dropout' ; dropout oranı 
  • 'MaxAccuracy' ; Eğitim esnasında ulaşılan maksimum Başarı değeri 
  • 'MaxValAccuracy' ; Test verisiyle ulaşılan maksimum Başarı değeri 
  • 'MinLoss' ;   Eğitim esnasında ulaşılan minimum Hata değeri 
  • 'MinValLoss' ; Test verisiyle ulaşılan minimum Hata değeri
 Başarı değerinin büyük hata değerin küçük olması daha iyi. Problemimin sınıflandırma olduğundan başarı değeri daha önemlidir. Başarı değerininde Test için olan değeri daha anlamlıdır. Ağ yapıları çok güçlü olduklarından veri setiniz büyük bile olsa ezbere kayabilmekdedirler. Tablolarda en iyi değerleri kırmızı olarak yazdırdık.

İlk tabloda gördüğümüz gibi dropout oranı arttıkça Eğitim başarısı  düşüyor. Fakat 0.2 ye kadar Test verisi başarısını artırıyor. 

İki tabloyu karşılaştırdığımızda bariz bir şekilde görüyoruz ki ara normalizasyon eğitimimizi olumlu etkilemiş

Ara normalizasyonlu tabloda  dropout oranı arttıkça Eğitim başarısı  düşüyor. Fakat 0.4'e kadar Test verisi başarısını artırıyor. 

 Ezberleyince eğitim grafiğimiz nasıl oluyor bakalım
Başarı grafiği


Hata değeri grafiği

Eğitim başarı değerimiz 0.99 sevyesine çıkmasına rağmen test  başarı değerimiz 0.45 civarında kalıyor.

deneyimizdeki en başarılı test değerine 0.4 dropout ile ulaşılmış 0.589 Ama 0.3 de ona çok yakın bir değer vermiş 0.585 aslında ralarındak fark çokda büyük değil. Eğitim başarısına bakarsak.
0.3 için 0.962
0.4 için 0.911
Bence 0.35 dropout değeri ile yeniden bir eğitim yapmak lazım.  İlla birini seçeceksen 0.3 dropout değerini seçeriz.  En başarılı sonucumuzun grafiklerinede bakalım
Başarı Grafiği





Özetlersek ;
  • Ara Normalizasyon iyi etkiliyor
  • Dropout u kullanmak lazım ama fazlası zarar 
  • En başarılı modelimiz bile 0.60 başarı sevyesine ancak geliyor başka bir ağ yapısını denemek lazım
Bizden bu kadar.  Akadamik camiadan  daha geniş deneysel çalışmalarıda bekliyoruz...

Perşembe, Ocak 18, 2018

OpenZeka MARC Mini Otonom Araç Yarışması





Duyanlarınız vardır muhakkak ,MIT de önderliğinde ABD de  Mini otonom araç yarışması düzenlenenmektedir. 
Bu yarışmanın Türkiye versiyonu ilk defa düzenleniyor.  Türkiyede bu  sorumluluğun altına OpenZeka firması girdi. OpenZeka, Türkiyede derin öğrenme farkındalığının öncülerinden olan Ferhat Kurt beyin bir girişimidir.

OpenZeka Marc
En son teknoloji ürünü sensör ve yapay zeka algoritmalarını kullanmak ve uygulama geliştirmek,
Takım çalışması ve takımlara arası etkileşim kültürünü artırmak,
Kendine güvenen ve robotik alanında ülkemizi temsil edecek genç girişimcileri yetiştirmektir.

Bu yarışmaya katılan takımlara yarışmada kullanılacak mini otonom aracın tasarımı ve yapay zeka algoritmalarının kullanımı konusunda ücretsiz eğitim verilecektir.

Open Zeka, bu yarışmayla yakın gelecekte hayatın her alanında yer bulacak otonom sistemleri tasarlama ve algoritma geliştirme seviyesini lise düzeyine indirerek ülkemizde teknoloji firmalarının ihtiyaç duyacağı otonom sistemleri geliştirebilen insan kaynağını oluşmasına katkı sağlamayı hedeflemektedir.
diye  anlatılmış etkinliğin web sayfasında. Bizcede Bu yarışma,Yapay Zeka ve uygulamaları konusunda bir sosyal sorumluluk projesidir.


Etkinlik kapsamında verilecek eğitimler için elimizden geldiğince yardımcı olmaya çalıştık.

Etkinlik kapsamında
  • ROS, 
  • kontrol teorisi
  • lidardan veri okuma
  • lidar verisiyle duvarı takip
  • Kameradan veri okuma 
  • Renk Filtreleme 
  • Duba takibi ( Renk  Filtreleme )
  • Parkur ve joyistik kaydı
  • Kayıtı kulanarak Derin Öğreneme Modeli Eğitimi
  • Eğitilmiş Model ile aracın otonom olarak parkurda hareket etmesi
Anlatıldı. Bizde  OpenCv anlattık ve Derin Öğrenme modeli için veri seti toplama, eğitme ve eğitilmiş modelin kullanımı konusunda yardımcı olduk. Pek çok ilgili bilgili insanlarla tanışıp, konuşmakda ayrıca mutlu etti bizi.

Yarışmalar önümüzdeki ay başlayacağını burdan duyurmuş olalım.

Yarışmanın ülkemiz açısından önemi büyük,  pek çok kesimde bilgi birikimi ve tecrübe kazanma vesilesi olacak bir etkinlik.   Bu yüzden uzun ömrülü bir etkinlik olmasını arzu ediyoruz.  Yapay Zeka konusunda  ilgili herkesinde destek olmasını canı gönülden istiyoruz.

Salı, Ocak 16, 2018

2017 de neler yaptık

2018 in ilk yazısı olarak geçen sene neler yaptığımıza dair bir yazıyla başlamak istiyorum.  Öncelikle blogdan başlayalım.

Blog da yine uygulamalı ve pratik örnekler vermeye çalıştım. Yazılarımızın pek çoğu Derin öğrenme ile ilgiliydi.  Derin Öğrenme ile ilgili pek çok kütüphane ortaya çıkdı. Avantajlar , dezavatajları neler, Hangisini tercih etmek lazım ? gibi sorulara cevap niteliğinde  yazılar yazdık


Özetle Elbette Caffede kullanıyoruz ama tercihimizi Keras dan yana yaptık.  Bu yüzden  Caffenin yanı sıra bu yıl Kerası da kullanmaya ve öğrendiklerimi anlatmaya başladım
 ilki temel açıklamalar hakkında bir giriş yazısı ikincide LSTM anlatılıyor ve zaman serisi ile bir uygulama yazıyoruz.

 
Semantik bölütleme bilgisayarlı görü ile ilgili autoencoder denen bir Ağ tipiyle Uydu görüntüsünden bina bulma işlemi yapdık. 



Duygu analizi diye geçen yazıdan Doğal dil işlemenin bir uygulamasını yapıyoruz.

Caffe ilede ilgili iki yazımız var
 İlkinde FCN ağ yapısında hazır bir caffe modelinin kullanımıyla semantik bölütleme yapılıyor.
Ağ yapısından bahsediliyor.

İkicisi aslında Caffe modellerini görselleştirip hangi katmanda neler oluyor görebilmemizi sağlayan bir uygulama.





 Açık kaynak kodlu bir proje olarak paylaşıyoruz.


 Elbette OpenCv hakkında da yazılar yazdık
 Yazılar  OpenCv nin pythondan kullanımı ve Derin Öğrenme modellerinin opencv içinden çağrılmasıyla ilgili.


Bu rda bahsettiklerimiz dışında da yazılarımız var. Bu senede klasik olan şey malesef  yine ilgi çok tepki yok  durumunun devam ediyor olması. Ben yinede hatırlatmış olayım her türlü görüş önerilerinizi bekleriz.

Salı, Ekim 10, 2017

Keras ile Duygu Analizi

Bir başka Keras uygulaması ile yine burdayız. Bu uygulamamız, doğal dil işleme ( NLP ) alanında olacak. Metinden duygu analizi  (Sentiment Analysis) üzerine bir çalışma yaptık.

Doğal dil işleme üzerine bir uygulama geliştirmenin ana zorluğu metinin sayılara dönüştürülmesi. Genel olarak kullanılan metodlar.
  • Kelimeler için vektör karşılığı ( WordVect)  hesaplamak ve bu vektörleri bir dizi şekilde vermek.
  • Kelimeleri bir dizi de tutup orda belli büyüklükte vektörlere eğitim esnasında çeviren Embeding katmanını kullanmak 
  • Metinin harf dizisi olarak düşünüp.  Her harfi harf sayısı kadar uzunlukta bir vectörle ifade etmek.
 Metinden duygu analizi çalışmalarında  genellikle verilen metnin olumlu yada olumsuz olduğunun tespiti üzerine çalışılır. Bizim kullandığımız veri seti de Twitlerin olumlu yada olumsuz olması hakkında.

Veri setimiz hakkındaki bilgilere ve verisetinin kendisine burdan ulaşabilirsiniz

thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/

Veri setimizde toplamda 1578624 adet kayıt var.
Olumlu   :    790184
Olumsuz :    788440
olumlu ve olumsuz nitelikli metinlerin sayılarıda aşğı yukarı eşit.

Biz metinin sayıya çevrilmesi için harf bazlı bir sistem uyguladık. Veri üzerinde herhangi bir filitreleme yapılmadı. Sadece küçük harfe çevrildi. Metinlerde geçen harler çıkarılıp birer sıra no karşılığla bir sözlükte -dict - tutuldu.
{'\t': 0,
 '\n': 1,
 ' ': 2,
 '!': 3,
 '"': 4,
 '#': 5,
 '$': 6,
 '%': 7,
 '&': 8,
 "'": 9,
 '(': 10,
 ')': 11,
 '*': 12,
 '+': 13,
 ',': 14,
 '-': 15,
 '.': 16,
 '/': 17,
 '0': 18,

...
Veri sadece Ağ yapısı olarak LSTM bazlı basit bir sistem kuruldu. LSTM de dizinin tersine sıralamasınıda hesaba katan Bidirectional katmanı ile birlikte kullanıyoruz.

 Layer (type)                 Output Shape              Param # 
===================================
bidirectional_1 (Bidirection (None, 150, 278)          310248  
_________________________________________________
bidirectional_2 (Bidirection (None, 278)               464816  
________________________________________________
dense_1 (Dense)              (None, 2)                 558     
________________________________________________
activation_1 (Activation)    (None, 2)                 0       
====================================

Total params: 775,622
Trainable params: 775,622
Non-trainable params: 0

Veri epey büyük olduğunda eğitim epey uzun sürüyor biz bir kontrol başarısı %85 civarında kesdik.
Çalışmamıza burdan erişebilirsiniz
github.com/birolkuyumcu/ddm_blog_examples/tree/master/sentiment
 Üzerinde çalışılması lazım elbette ama bence bu halide fena değil. Bir örnek verelim
"Got the Macbook Pro seller to send me the serial number of the machine before I paid.
Turns out its just a macbook so not buying it now"
 bu twit için  modelimiz.  0.623167 oranıyla olumsuz diye karar vermiş
aynı twitin başındaki kısmı alıp sorduğumuzda
"Got the Macbook Pro seller to send me the serial number of the machine "

haklı olarak  0.62573 oranıyla olumlu cevap vermiş.

Giriş niteliğinde, harf bazlı, LSTM içerikli bir çözüm. Bir başlangıç noktası olmasını umuyor, görüş ve önerilerinizi bekliyoruz...


Pazar, Ağustos 27, 2017

Derin Öğrenmede Kütüphane Savaşları 2


 TensorFlow

TensorFlow  kütüphanesi bir Google ürünü. Açık kaynak kodlu ticari kullanıma uygun lisanslı. Geç çıkmasına rağmen, Google'ın iteklemeleriyle - destek kelimesi az gelir diye böyle yazıyorum - epey bir öne çıktı. Derin öğrenmeyi ilk farkeden şirketlerden olması sebebiyle firmalarında bu işle uğraşan epey insan vardı. Bunların hemen hepsi - el mahkum -  tensorflow'a geçti. Theanonun üstünde çalışan popüler kütüphane Keras'ın geliştiricisini işe aldı. Keras theanodan sonra tensorflow üzerinede çalışmaya başladı. Hızını alamadı, Kerası bir alt küme halinede getirdi.
Tensorflow'u bulut da daha bir hızlı çalıştıracak donanım çıkardı tensor processing unit. Bu adımıyla hem NVIDA hemde Amazona tehdit oluşturdu.
İşin ticari yönündeki gelişmeleri öngördü. Yapılacak uygulamaların çoğunun web tabanlı servis olarak sunulacakdır. Bir strateji kurdu,  tensorflow yaygınlaştırılacak. Eğitilmiş modelleri sunan sistemler kurup ordan para kazanmak. Nitekim Algorithmia - open marketplace for algorithms -  google dan yatırım aldı
Sonuç olarak Google 'ın Vakti zamanında Microsoftun yaptığı tekelci hamlelerini andıran davranışlar sergilediğini düşünüyorum. Tensorflow hakkında teknik hiç bir söylemiyorum çünkü Yukarda bahsettiğim davranışları antipatik bulduğumdan hiç kullanmaya niyetlenmedim. Bence Tensorflow popülerliği zorakidir. Piyasadaki diğer kütüphanelerden olan üstünlüğüyle değil google'ın diretmesiyle bu haldedir. Tavsiye etmiyorum

CNTK 

Microsoftun  kütüphanesi ismi  "Microsoft Cognitive Toolkit"  olarak değiştirildi. Microsoft da derin öğrenmeye erken girişen firmalardan. CNTK 'yı denemek için niyetlenip incelediğimde tuhaf bir lisansla karşılaştım.
CNTK-1bit-SGD-License
ve vazgeçtim. Google ile aynı niyetle çalışmalarını sürdürüp ürününü popülerleştirmeye çalışıyor.
Reasons to Switch from TensorFlow to CNTK
 Programcıların gözdesi Kerasa da el  attılar tıpkı google gibi...


Using CNTK with Keras

Yine google gibi donanım işine el attılar TPU ya alternatif FPGA yi de öne sürüyorlar.
Rekabetten Kerasın güçlenmesini sevinsemde doğrudan CNTK yı tavsiye etmiyorum.

MxNet


Önceleri gariban şimdilerde Amazonun  desteklediği  bir kütüphane. 

MXNet - Deep Learning Framework of Choice at AWS

Apache da destekliyor

MxNet sponsored by the Apache Incubator
Eskiden beri windows desteği olan. Hatta  derlenmiş dağıtım sunan çok beğendiğim bir kütüphane. Derin öğrenmeye ilk başladığımda üzerinde denemeler yaptım. İlla python diye ısrarı yok   C++, R, Js,Julia hatta go ile yazabiliyorsunuz. Modaya uyup Kerasın altında çalışmaya adapte edildi.
Yanlız kerasın eski versiyonu üzerinde çalışıyor nedense. Yeni versiyon için desteğinde geleceği söyleniyor. 
MxNet ile devam etmemiş olmam yeterli dökümantasyon ve örneğin olmamasıydı. Yeni desteklerle bu eksikliklerini tamamlıyor gibiler.  Bir gözünüz MxNet te olsun derim ben...

Keras

Popüler üst düzey programcıların gözdesi  python kütüphanesi . Kullanımı çok kolay. Öğrenmesi kolay. Örnek ve destek çok.

Sonuç olarak Kerası kullanıyorum ve tavsiye ediyorum.
Elbettte eksiklilkeri var.
 Keras üst  düzey bir kütüphane, çalışabilmesi için altta başka bir kütüphanenin - backend- çalışıyor olması lazım.  Hali hazırda Theano , Tensorflow, CNTK  kütüphaneleri bu işlevi yerine getiriyor. MxNet 'in de eli kulağından  kerasın eski versiyonu için adapte edildi. yeni verisyonu için çalışmalar yapılıyormuş.  Allta çalışan kütüphanelerin sebep olduğu sıkıntılar

Eğittiğiniz modeller altta çalışan kütüphaneye göre değişiyor. Python dışında çalıştırmak için de genel resmi bir  çözüm yok malesef. (şunlar var ;  kerasify , keras2cpp )
Yeni katman tipleri yazmak gerektiğinde , genellikle kerasın imkanları yerli olmuyor. Altta çalışan kütüphaneyide biliyor ve iyi bir şekilde kullanabiliyor olmanız lazım.
Çok büyük veri setleri için modele hızlı veri besleme için dahili bir çözüm yok malesef.
Multi GPU desteği henüz yok sayılır. ( Mxnet le birlikte gelecek gibi görünüyor  bakınız )

Burda bahsedemediğimiz pek çok irili ufak kütüphanede vardır elbette. Biz hakkında az çok bilgi sahibi olduğumuz nispeten daha yaygın olanlardan bahsettik.

Şirketlerin Konumları

Kütüphanelerin savaşları dedik.  Durumu  savaşa ! çeviren şirketlerin taraf tutarak diğer seçeneklere karşı olmaları. Kütüphaneleri anlatıren bahsettik ama burda şirket şirket bir adaha yazayım. Beleşe tavsiyelerde bulanayım dedim

Google :  

Google bence yanlış yapıyor.  Tekelci bir anlayışla davranmanın kazandığın durumda şirket için iyi olması yapılan şeyin doğru olduğunu  göstermez. Tensorflow'u destekleyebilirsiniz ama diğerlerini ezmeye çalışmak doğru değildir. TPU  üretmek ve piyasaya sokmak isteyebilirsiniz ama diğer kütüphaneler ile kullanılabilecek alt yapıyı sağlamalısınız. Hiç olmadı Kerasa destek olmazız lazım.

Quaradaki "Is Google an evil company?" sorusuna şöyle bir cevap gelmiş
"The only significant difference between a kitten and a tiger is that the tiger is bigger"
Eğer kaplan büyüklüğündeyseniz hareketlerinize daha çok dikkat etmeniz gerekir. Aksi halde sorunun cevabı Yes olur.
  

Microsoft:

Google dan önce kaplan olmuş :) ve "Is Microsoft an evil company" sorusuna Büyük bir Yes cevabı almış ve bunun ceremesini yıllardır çeken bir firmadır. Google a göre daha temkinli davranmayı öğrenmiştir. Linux'a kapılarını açmış ordada iş yapmaya -Azure- başlamıştır.  Ortada bir sürü lisansı uygun kütüphane varken kendi yayınladığı ve yaygınlaşması için uğraştığı kütüphanenin bir kısmına Tuhaf bir bir lisanslama niye ayağına kurşun sıkar anlamış değilim...



NVDIA:

Derin öğrenmenin motor gücünü oluşturan GPU ların üreticisi olarak hemen her kütüphaneye destek veriyor. Verdiği desteklerin kütüphanelere zarar vermemesinide temin etmesi lazım diyorum. Digits altında kullanmak için değiştirdiği caffe sürümünü, ana geliştiricilerle ortaklaşa hazırlasaydı, şimdi caffe deki bu dağınıklık olmazdı muhtemelen.


Amazon:

İşlerinin bir kısmına gözünü dikmiş şirketler var ve Koştura koştura çalışıyorlar. Geç  farkına vardılar. MxNet i destekleme kararı aldılar ama bence yeterli destekde bulunmuyorlar halen.


Facebook:

Çok güzel bir ekip kurdular. Çok güzel çalışmalar da yapıyorlar.  Caffe2 ve Torch 'un arkasında durdular. İkisi içinde daha çok çalışmaları lazım. Torch lua sebebiyle popülerliğini kaybetti. Caffe2 ve PyTorch yeni çıktı sayılır. Yaygınlaşabilmeleri için epey bir emek lazım. 


Intel:

Ne yaptıkları belli değil. Beleş tiyolar verelim. 
Kütüphanelerin  cpu optimize halini çıkarmaları hikayedir. Paralel işlem yapabilen donanımlar geliştirip. Bunlara kütüphanelerin kolayca uğraşacağı ara kütüphanelerini yazmaları zorunludur.  Mesela NVDIA nın cuDNN kütüphanesi gibi .
cuDNN, hemen her derin öğrenme kütüphanesinde gpu için kullanılmaktadır. Intelde kendine bir yol seçmeli (OpenCL bazlı gpu larmı olur mi olur Yoksa FPGA mı olur )  
Sonra ona uygun ara kütüphane çıkarmalı
CL_DNN mi olur artık FPGA_DNN mi
Kütüphanelerin kendi donanımlarına adapte edilmesi için destek vermeli
piyasaya girmelidir. 
Hiç bir şey bilmiyorsa Theanoya ve libgpuarray'a destek verimesi lazım.


Son Söz 

Epey bir dağınık oldu kusura bakmayın.  Pek çoğuda şahsi görüş ağırlıklı oldu, o nazarla bakın. Her türlü eleştiri ve önerinizi bekleriz....

Salı, Nisan 25, 2017

Semantik Bölütleme ve Autoencoder

Başlıktanda anlaşılacağı üzre semantik bölütlemeye devam edeceğiz.

Building_Segmentation from bluekid on Vimeo.




Bölütleme pekçok görsel çözümün temelinde bulunması gereken bir aşama. İnsanoğlunun görmesinin de önemli bir parçası. Görme alanımızın tamamına sürekli dikkat etmeyiz.  sadece yaptığımız iş için gerekli olan kısımı takip ederiz. İnsanoğlu hem konumlandırır hemde tanır.  Semantik bölütleme makinaları bir aşama daha insan algısına yaklaştıırır.

Uygulama alanı çok geniştir. Medikal görüntü işlemeden, otonom araca, sanayide kalite kontrolden, e-ticare, uzaktan algılamaya kadar pek çok alanda kullanılabilir.





Konuyla ilgili çalışmaların linklerini bu adresde listlemişler
handong1587.github.io/deep_learning/2015/10/09/segmentation.html
bir inceleyin uzun web aramalarından sizi kurtaracaktır.

Bizde bir çalışma yapalım istedik ve uygun bir veri seti aradık. Sonunda uydu görüntülerinden bina bölütleme için hazırlanmış şu küçük veri setine ulaştık
 Building Detection Dataset ( web, data , ground truth )

Veriler  IKONOS ve QuickBird uydularından çekilmiş 14 resim ve o resmilerdeki binalar için bölütlemeyi gösteren çıkış resimlerinden oluşuyor.


Veriler  hakkında ki detaylı  bilgileri şurdan alabilirsiniz

Resimler tiff formatında fakat uydunun çektiği görüntü multi-spektral olduğundan (B, G, R, and NIR)  ilave katmanı var. Biz bu çalışmamızda normal görünür katmanları kullanacağız. Bu özel tiff formatını okuyabilmeniz için  şu yazıdan faydalana bilirsiniz.









Öncelikle Uydu fotoğraflarını sadce RGB kanalları ile kaydediyoruz.
Fotoğrafların ebatlarındaki değişiklik ve büyük olmaları Eğiteceğimiz ağa doğrudan vermemizi zorlaştırıyor. Keza 14 resimde veri sayısı olara az. Çözüm olarak her resimden rastgele 256x256 ebatında 100 er örnek alıyoruz.  Aslında doğrusu verileri çoğaltamak olmadı en azından ilaveten resimlere gürültü ekleme döndürme işlemleride uygulamakdi. Biz bu kadarla iktifa ettik

Verilerimizi hazırladığımıza göre ağımıza geçebiliriz. Biz kerası kullandık bu problem için.
Building Autoencoders in Keras
yazısındaki kodlardan faydalandık.

Bahsettiğimiz yazının "Convolutional autoencoder" kısmında ilginç bir problem çözülüyor.

Gürültü eklenmiş görüntüler


temizleniyor.  Giriş olarak  üsttteki resimler veriliyor. İstenen çıkış olarak alttaki resimleri veriyorlar. Ağı gürültülü resimden temizlenmiş resme ulaşacak şekilde eğitiliyor. Ağ yapısıda oldukça basit



Encoder ; Giriş resmini alıp Conv2D ve MaxPooling2D katmanları ile ebatça küçültülüyor.
Decoder ; Encoderdan gelen veriyi Conv2D ve  UpSampling2D katmanları ile ebatça büyütülüyor ve nihayetinde çıkış verisine eşleniyor.

Katman dedik ama yazılışı tuhafınıza gitmiş olabilir aslında Kerasın iki ana  şekilde kodlama imkanı var biri daha önceki bahsettiğimiz kamanlar halindeki diğeride burda görmekte olduğunuz katmanların fonksiyonlar olarak tanımlandığı tarz detaylar için bakınız

Keras functional API
Yazıdaki problemde giriş ebatı ufak ve nispeten daha kolay bir problem biz bu yüzden kendi çalışmamızda ilave katmanlar ekledik
Encoder için  ;  Conv2D ve MaxPooling2D
Decoder için  ; Conv2D ve  UpSampling2D


elbette filtre sayılarınıda artırdık. Problemin zorluğuna göre ağın katman sayısını ve topolojisini değeiştirmek gerekiyor.  Mesela Medikal görüntüler üzerinde çalışan u-net diye adlandırılımış şöyle bir yapı var




bu karmaşık ağ yapısı ve kullanımı için Kaggle 'ın "Ultrasound Nerve Segmentation" yarışması için hazırlanmış  çalışmaya
ultrasound-nerve-segmentation
bakabilirsiniz.

Unutmadan Dice ölçütünden de bahsedelim;

wikipedia da Sørensen–Dice coefficient  diye geçiyor teferruatını merak edenler oraya bakabilir.

 Biz burda olabildiğince sade anlatmaya çalışacağız.

 Ağın eğitimi  dediğimiz şey hatasını görmesiyle ! mümkün. Ağın hesapladığı çıktı ile gerçekte olması gereken çıktı rasındaki fark bize hatayı veriyor ve hata değerimize göre ağın içindeki parametreler düzeltilerek,k hatayı minimize etmeye çalışıyoruz. Eğitim dediğimiz bu.

Bizim problemimizde aslında nokta bazında bir sınıflandırma yapılıyor. Bir noktanın iki ihtimali var. Ya Bir binaya ait yada değil. Ama şöyle bir problem varki elimizdeki verilirin çoğunda  noktalar bir binaya ait değil. Bu yüzden klasik bir hata hesabıyla elde edeceğimiz sonuç bize doğru bir hata değeri vermiyor. Örneklendirelim

Resimlerde Bina olan kısımlar beyaz diğer kısımlar arka plan siyah gösteriliyor.

Ağımız şöyle bir çıktı hesaplamış olsun




Gerçekte olması gerekense şu olsun


klasik bir fark ile hesaplarsa bu iki resim arasındaki tutmayan kısımlar, yani bina yı arka plan yada arka planı bina diye tahmin ettiğimiz yerler


Koca resmin çok az bir kısmı tutmamış :) . Bu şekilde hesaplanan hata değeri oldukça küçük çıkacaktır.  Küçük hata değeride eğitimin yetersiz olmasına sebep olur.

Oysa gerçekte  sadece binaya bina dediğimiz  şekilde bakarsak

  gördüğünüz gibi Binanın olduğu yeri tahmin olarak çok küçük bir kısmı doğru tahmin etmiş ağ.

Bu problemin çözümü için şöyle bir hesaplama yapılıyor.  Bina için  Doğru hesaplanan noktaların sayısının  iki katı alınıyor ve bu sayı hesaplanan ve gerçek çıktı resimlerindeki noktaların toplamına bölünüyor. Hiç tutmadığında 0 . ve tamamen  çakıştığında 1 çıktısı veren bir ölçüte sahip olmuş oluyoruz.

Ölçüt tek başına bir işe yaramıyor bu ölçütten bir hata değeri hesaplayan bir  özel bir loss fonkisyonu yazmamız lazım ki Eğitime bir faydası dokunsun.
Nasıl kodlandığını görmek isterseniz
github.com/jocicmarko/ultrasound-nerve-segmentation/blob/master/train.py
bu dosyadan dice_coef  ve dice_coef_loss fonksiyonlarını inceleyebilirsiniz.  Bizde eğitimizde bu metriği ve loss fonkisyonunu kullandık.

Sonuçda bir kaç günü aşkın eğitim ve ağ düzenleme faaliyetleri sonunda  Yukarda videoda gördüğünüz sonuçlara ulaştık.
Dice ölçütü
Eğitim verisi için 0.9148
Test verisi için 0.7530 
 'e kadar yükseldi.

Her türlü görüş, düzeltme , soru ve önerilerinizi  bekleriz.