Cumartesi, Ağustos 31, 2019

FastText ile hızlı metin sınıflandırma - 3

Bir önceki yazımızda veri kümemimiz ile FastTextGUI kullanarak eğitim işlemini yapmıştık. Eğitim sonucunda uzantısı .bin  olan bir models dosyası oluşturuldu. Bu yazımızda eğittiğmiz modeli nasıl kullanacağımızı göreceğiz.

Eğtilmiş modeli kullanmanın iki yolu var. Birincisi FastText in komut satırı çalıştırılabilir programını kullanarak. İkinci yolu FastText i python kütüphanesi olarak yükleyerek.

İlkinden başlıyalım. FastText programının kullanım parametrelerine bakalım


Bu seçeneklerden  tahmin için "predict" yada "predict-prob" sçeneğini kullanabiliriz. aralarındaki fark ikincisinde tahmin ile birlikte tahin kesinlik ihtimalinide veriyor.  Tahmin yapılmasını istediğiniz metinleri her biri bir satır olacak şekilde bir metin dosyasına kaydetmemiz gerekmekdedir. Her tahmin için geçici bir metin dosyası yazdırıp FastText programıyla çalıştırmamız gerekiyor. Bu işlem için bir fonksiyon yazdık


Kullanım için test için hazırladığımız dosyayı yüklüyoruz. Burdaki gerçek sonuçları da ayırıp sorgumuz yapıyoruz sonuçlarıda gerçek sonuçlarla karşılaştırmak için sckit-learn kütüphanesinin , confusion_matrix, classification_report  fonksiyonlarını kullanıyoruz.
confusion_matrix : Karşılaştırma matrisi  tahmin edilen ile gerçek değerelri karşılaştırmanıza yarar matrisin bir ekseni gerçek değerler diğer ekseni tahmin edilen değerleri gösterir.

 her satır gerçek değerleri gösterir her sutunda tahminleri gösteriyor. Eğer modelimiz %100 başarılı olsaydı satır ve sutun indeksi aynı olan yerlerde her sını için örnek sayısı olan 5 bin dğerini göremiz gerekirdi.  Örnek vermek gerekirse ilk sınıfımız olan Şirket sınıfındaki  5 bin örnekden 4767 tanesi Doğru tahmin edilmiş. 39 tanesi  2. sınıf olan Eğitim kurumu olarak Yanlış tahmin edilmiş.
Bir güzelliğide bir birine karıştırılan sınıfların kolaylıkla görülebilmesidir.

classification_report : fonksiyonu ise  sınıf bazında recall: duyarlılık , precision: kesinlik ve bu ikisinin karışımı bir ölçüt olan f1 skorlarını hesaplayıp listler. Adıyla müsemma Sınıflandırıcı raporu düzenler



 İkinci metodumuz FastText python pakedini yüklemek. Tahmin edebilecğiniz gibi
pip install fasttext


şeklinde yapıyorsunuz. 

import fasttext
 model = fasttext.load_model('models/dbpedia_1.bin')

ile yüklüyoruz
tahmin için sorgu listemizi bir yere kaydetmemize gerek yok artık direk çağırıyoruz
model.predict(qlist)
sonuçları yine ilk örneğimizdeki gibi hesaplattırıyoruz. Aşağı yukarı aynı sonuçlara ulaşıyoruz. Toplamda  98.3 lük başarı değerine ulaşıyor modelimiz. Eğitim aşamasına geri dönüp değişik parametre ayarlarıyla daha iyi sonuçlara ulaşmaya çalışabilirsiniz. Yada ilk aşamaya dönüp Veri kümesi üzerinde değişik ön işlemeler yapıp sonuçlar üzerindeki etkisini gözlemleyebilirisiz . gerisi size kalmış

 FastText hakındaki bu seri yazımızı bitiriyoruz.  Üç yazı boyunca yaptıklarımızı github hesabımızdan paylaşıyoruz.  Kimbilir belki taş üstüne taş koyan çıkar.

Bu yazımızdaki kullanım ile ilgili kodlar,  "example"  dizininde "evaluation_with_executable" ve  "evaluation_with_python_binding" isimli ipython dosyalar olarak bulunuyor.
Veri kümesini FastText 'in kullandığı şekle çeviren kod  yine "example" dizininde "prepare_data" isminde

FastTextGUI nin kodlarına ise gui dizinin içinde ulaşabilirsiniz

Projenin github adressi ;

  https://github.com/birolkuyumcu/fasttext_gui
 Her türlü görüş ve önerilerinizi bekleriz.

Cuma, Ağustos 30, 2019

FastText ile hızlı metin sınıflandırma - 2

Metin sınıflandırma için öncelikle bir veri seti bulmamız gerekiyor biz bu yazımız için dbpedia veri kümesini kullanacağız. Sizde uygulama istiyorsanız aşağıdaki linkden indirebilirsiniz


Veri Kümesinin açıklamasını okuyoruz.
...
The DBpedia ontology classification dataset is constructed by picking 14 non-overlapping classes from DBpedia 2014. They are listed in classes.txt. From each of thse 14 ontology classes, we randomly choose 40,000 training samples and 5,000 testing samples. Therefore, the total size of the training dataset is 560,000 and testing dataset 70,000.
...
Yani DBpedia 2014 den çekilmiş  14 değişik sınıfa ait yazılar başlık + içerik olarak toplanmış.  Her sınıf için eğitimde 40 bin  test veri seti için 5 bin örnek kaydedilmiş. DBpedia  wikipedia da üretilmiş içeriklerin yapısal bir şekilde derlenip torpalanmış halidir diyelim. DBpedia hakkında daha fazla bilgi için sitesine gidebilirsiniz. Belkide size lazım olan veri kümesini bu şekilde temin edebilirsiniz...


Açıklamanın tamamını veri kümesini indirip açtığınızda "readme" belgesinden okuyabilirsiniz

veri kümemiz sıkıştırılmış dosya olarak geliyor bulunduğumuz dizine açınca  "dbpedia_csv" isimli bir dizine açılıyor

Sınıf isimlerimizi okuyoruz



Şirket , eğitim kurumu, vs diye başlayan 14 başlık var. Başlıkları ayrı yazmışlar çünkü veri kümelerinde  yani "dbpedia_csv/train.csv" ve "dbpedia_csv/test.csv" de sınıf isimleri 1 den başlayan sayı olarak yazılmış



FastText eğitim için veri kümesinin bir metin dosyası halinde verilmesini istiyor. İstediği Format ise  her satırda bir veri birimi  başta  "__label__" a hangi sınıf sa onu yazıyoruz sonrasında boşluk ve  virgül  ile ayrıp satırın devamında  o sınıfa ait bir metin yazıyoruz.  Bizim metin kısmı başlık ve açıklamda olarak iki parçalı geldiğinden birleştiriyoruz.  Etiket olarak yukarıda okuduğumuz sınıf isimlerini kullanıyoruz. Metin verisinde yaptığımız tek işlem ise küçük harfe çevirmek. Veriler sıralı şekilde verilmiş, bizde karışmadan aynı şekilde FastTextin istediği formata çevirip yazıyoruz



aynı işlemi test verisi içinde yapıyoruz.


Evet artık 'dbpedia.train' ve 'dbpedia.test' diye 2 dosyamız oldu içine bakıyoruz



Bu aşamadan sonra sıra geliyor FastText'e.  İki şekilde kullanmak mümkün FastText'i derleyip komut satırından çağırmak , yada Python paketi olarak kurup onu kullanmak. FastText ilk çıktığında python paketi yoktu ve bizde bu eğitim işinde parametere ayarlarını kolay yapabilmek için bir GUI yazdık. Ve halende kullanıyoruz. Fakat malesef kod python2 de kaldı python3 e taşımaya fırsat ve gerek bulamadık daha kullanmak için python2 , pyside , pygal, paketleri gerekiyor. 
Görünümü şu şekilde ;



FastText i kullandığından kelime vektörü  hesabı içinde kullanılabilir elbette ama bizim şu anki önreğimiz metin sınıflandırma olduğundan command kısmında "supervised" seçeneğine ayarlıyoruz. TextFile kısmına eğitim veri kümemiz için hazırladığımız dosyayı seçiyoruz.   
Model File kısmında Eğitim sonrası eğitilen modelin ismini belirliyorsunuz. 
Sağ üstteki Play tuşu ile eğitimi başlatabiliyorsunuz. En sağdaki Dur işaretide durdurmak için
Altta Learning Rate  ile başlangıç öğrenme hızını belirliyorsunuz
Epoch Diğer makina öğrenme metodlarından bildiğiniz gibi eğitim kaç adım yapılacağı
En az kaç defa geçen kelimenin alınacağı, karekter ngramlarında hangi aralığın kullanılacağı, kelime ngramı kaçlık kullanılacağı vs gibi pek çok seçenek var. Ayarlı seçenekler ile başlayıp denemeler yapmak gerekiyor.

Eğitim bitince eğitim veri kümesinin ismi aynı uzantısı .test olan bir dosya varsa eğitilmiş model ile bu test dosyası çalıştırılıp sonuçda veriyor







Resimden de göreceğiniz üzere
  • precision: kesinlik    0.983
  • recall: duyarlılık   0.983
değerlerine ulaşttık ki gayet güzel sonuçlar

Eğitim sonunda  Loss  değerinin düşüşünüde grafik olarak alabiliyorsunuz.




Eğitim sonucunda uzantısı bizim belirlediğimiz isimde
uzantısı .bin  olarak model dosyası
uzantısı .vec  olarak kelime vektörelrinin tutulduğu dosya oluşturulur
FastTextGUI de bunlara ilaveten
uzantısı .log olan eğitim serencamını tutan dosya
uzantısı .svg olan  loss düşüş grafiğinin dosyasını oluşturur.


Eğittiğimiz modeli kullanmak için sadce uzantısı .bin olan dosya yeterli olmaktadır.

Eğittiğimiz modelin kullanımını bir sonraki yazımıza bırakıyoruz.  Yazı dizimiz bittiğinde bütün kodlar yayınlanacaktır.

Her türlü görüş ve önerilerinizi bekleriz.

Perşembe, Ağustos 29, 2019

FastText ile hızlı metin sınıflandırma - 1

 

 

 Girizgah :

Önce bu konuya nerden girdik ondan bahsetmek istiyorum. Blogda duyuru şeklinde yazmamış olsamda Linkedin hesabımdan beni takip edenler biliyor ki artık bir dökümcü değilim. 2016 yılı Temmuz ayın dan beri Sefamerve.com un ArGe kısmında çalışmaktayız. Bu yılın başından beride bölümümüz ArGe merkezi statüsüne kavuştu. "Bir dökümcü ve bir simitçiyle"  başlayan macera bizi nerelere götürecek ? Kısmetimizde ne tür vavlar çizmek var göreceğiz bakalım...

2017 yılında metin sınıflandırma ile ilgili bir ihtiyacımız oldu. Bu konu daha öncesinda tecrübemizin olmadığı bir alandı.  Hızlıca bu problemi nası çözeriz diye araştırır ken FastText'e ulaştık. Çokda beğendik. O zamanlar sadece komut satırından program olarak çalışan hali yayınlanmıştı. Kullanımını kolaylaştırmak için üzerine çala kalem bir GUI yazdık ve kendi işlerimizde kullandık.

FastText i kullanarak makale çalışmasıda yaptık. Deniz Kılınç hocamızın yayınladığı TTC-3600 veri seti üzerinde bir uygulama yaptık. Bu konuda Deniz hocamızın zaten öncesinde yaptığı çalışmalarda vardı. Makalede ismi geçmiyor olsada emekleri büyüktür, teşekkür ederiz. Bu makaleyi biz Japonyada Tokushima üniversitesinde düzenlenen NLPIR 2019 konferansına yolladık ve kabul aldık. Yakın zamanda da makalemiz  ACM (Association for Computing Machinery) Digital Library altında  yayınlandı.

"An automated new approach in fast text classification (fastText): A case study for Turkish text classification without pre-processing"

FastText:

Uzunca girizgahdan sonra esas konumuza dönüyoruz.  Elimizde pek çok Yapay Öğrenme  - Makine Öğrenmesi - algoritması var. Fakat Bu metodların hepsi sayılar üzerinde çalışıyor. Doğal Dil İşleme üzerinde ki ana problem de burda başlıyor. Metin verisini nasıl sayısallaştırabiliriz ?  Kelime bazlı, harf bazlı yada bunların gurupları -ngram-  şeklinde yaklaşımlar olmuştur.  Kategorik dönüşüm şeklinde ilk akla sistemdir. Kelime sayısının çok büyük olmasıyla devasa vektör uzunluklarıyla sonuçlanabilir.

Sonra Kelime vektörü - word2vec - denen bir kavram çıkmış ortaya.  Her kelime için sabit uzunlukta bir vektör kullanmak. "Birlikte geçen kelimeler anlamca yakındır" var sayımından yola çıkılıyor.  Başlangıçda aynı yapay sinir ağlarındaki gibi kelimeler için rastgele seçilmiş vektör değerleri atanıyor. Devasa derlem - corpus - kullanarak danışmansız şekilde - unsupervised - her kelime için birlikte geçtiği kelimelere göre bu vektörler güncelleniyor. Bu öğrenme sürecinin iki ana şekli var. CBOW ve skipgram 

bu iki yapının şematik gösterimi şöyle




cbow da  hedef kelime vektörüne  o kelimenin etrafında geçen kelimelerin vektörlerinin toplamıyla ulaşılmaya çalışıyor ve bu hedef doğrultusunda vektörler güncelleniyor
skipgramda ise tersine hedef kelimeyle birlikte geçebilecek kelime yada kelime ngramlarına ulaşılmaya çalışıyor ve bu hedef doğrultusunda vektörler güncelleniyor


Bir rivayete göre cbow daha hızlı eğitilir ve  sık geçen kelimeleri daha iyi temsil eden vektörlere ulaşabilir. Skipgram  eğitim veriniz az da olsa iyi çalışır, nadir geçen kelimeleri bile yeterince iyi temsil edebilecek vektörlere ulaşabilir.

Eğitim sonucunda vektör uzayında benzer anlamlara gelen kelimeler yakın yerlerde kümelendiği gibi
kelime vektörleri uzayında yapılan işlemler de anlammı sonuçlar verebilmektedir. Meşhur örnekler


Erkek kelimesinin vektöründen Kral keliimesinin vektörünü çıkarıp Kadın kelimesini ilave edine ulaştığımız vektörel değer Kraliçe kelimesinin vektörel kaşılığına ulaşıyor



yada ülkeler ve başkentleri arasında  böyle bir vektörel ilişki görülebiliyor. 

Kelimelerin bu tür anlamsal bağ  içeren vektörel dönüşümleri elbette doğal dil işleme için elbette çok önemlidir.

Word2vect metodu  2013 yılında googleda  Mikolov un liderlik ettiği bir gurup tarafından yapılmıştır. Sonrasında Mikolov  Facebook a geçmiş ve FastText bir anlamda bu metodun daha gelişkin halidir.
Temel üstünlüğü kelimeleri  harf engramları olarakda görebilmesinden gelmektedir. Halen geliştirilmeye devam edilmektedir. FastText in detayları için aşağıdaki makaleleri incelemenizi tavsiye ederiz.


Epeyde teoriden bahsetmişiz gelelim pratiğe.  FastText in "supervised" kısmıyla çok başarılı Metin sınıflandırma işleri yapabiliyorsunuz.  Hemde küçük harfe dönüştürmek dışında hiç bir ön işlem yapmadan mümkün oluyor. GPU istemiyor. GPU nuz olsa bile RNN bazlı sistemlere göre çok çok çok daha hızlı eğitiliyor.

Bu yazıy burada noktalayalım bir sonraki yazımızda örnek  uygulama yapacağız. Her türlü görüş ve önerilerinizi bekleriz.