Sayfalar

Cumartesi, Temmuz 07, 2018

EKG Kalp Atışı Sınıflandırması 5

Derin Öğrenme

Evet son olarak günümüzün en popüler ve en güçlü yapay öğrenme metodu olan derin öğrenmeye geldi sıra. Malumunuz biz keras kütüphanesini kullanıyoruz. Bu problemi çözmek için 3 tane ağ tasarladık.  Hepsi için ortak kullanıdğımız parameterler şöyle
  • batch_size :  128
  • epochs :  120
  • optimizer :  adam

 Dense ;

İlki klasik yapay sinir ağı diyebileceğimiz, keras daki "Dense" katmanlarıyla oluşturulmuş bir ağ. Sklearn deki MLP nin benzeri bir çözüm diyebiliriz. Farklılığına gelirsek burda biz bunu keras kütüphanesini kullanarak uyguladık, ve 'Dropout' denen katmanlarda ilave ettik.


Eğitim grafiğimiz


Sonucumuz
  Classification Report
             precision    recall  f1-score   support

          N      0.983     0.995     0.989     18118
          S      0.916     0.664     0.770       556
          V      0.951     0.941     0.946      1448
          F      0.911     0.698     0.790       162
          Q      0.986     0.978     0.982      1608

avg / total      0.979     0.980     0.979     21892

Conv1D;

İkinci olarak Tek boyutlu evrişim katmanlarının kullanıldığı VGG tipi bir ağ tasarladık. Kısaca iki evrişim katmanı sonrasında boyut küçültme - bakınız pooling -  şeklinde tarif edilebilecek bir yapı.
Ağ yapımız böyle



Eğitim Grafiğimiz



 Sonucumuz
 Classification Report
             precision    recall  f1-score   support

          N      0.990     0.996     0.993     18118
          S      0.895     0.809     0.850       556
          V      0.971     0.950     0.960      1448
          F      0.826     0.735     0.778       162
          Q      0.998     0.986     0.992      1608

avg / total      0.985     0.986     0.986     21892

LSTM;

Son olarak Özyinelemeli Sinir Ağları - RNN - denen ağ yapısının en bilinen tipi olan LSTM  kullanıldı.  Bu tip ağlarda vectörel biri giriş değil, zaman da değişen değerler öğrenilir. Dizilimden bir sonuca ulaşma tipine "many to one"  diyorlar.

The Unreasonable Effectiveness of Recurrent Neural Networks
 Andrej Karpathy nin yukardaki yazısından detaylara ulaşabilirsiniz. Konuyu dağıtmadan devam edelim

Ağ yapımız şöyle



Eğitim Grafiğimiz



Sonucumuz
 Classification Report
             precision    recall  f1-score   support

          N      0.986     0.997     0.991     18118
          S      0.915     0.755     0.828       556
          V      0.964     0.938     0.951      1448
          F      0.813     0.673     0.736       162
          Q      0.996     0.980     0.988      1608

avg / total      0.982     0.983     0.982     21892

Sonuçlar hakkındaki görüşlerimizi bir sonraki yazıya bırakıyoruz. Sadece bu yazımıza kadar denediğimiz metodlardan en başarılısı evrişimli yapay sinir ağını uyguladığımız oldu deyip bitiriyoruz. Her türlü görüş ve önerilerinizi bekleriz.

Hiç yorum yok: